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An interrelation between the properties of the space-time structure near moving 
particles and their dynamics is discussed. It is suggested that the space-time 
metric near particles becomes a curved one ~,~(x, bE) depending on a random 
vector b e = (b4, b) with a distribution w( b2/I  2 ); the averaged space-time metric 
(,~,~(x, bE) ) over this distribution gives the general effect on particle behavior. 
As a result the particle motion in our scheme is described by a nonlinear 
equation. It turns out that the nonrelativistic limit of this equation gives a simple 
connection between the space-time structure at small distances and the dynami- 
cal behavior of particles. Different types of particle motion (nearly rectilinear, 
stochastic, and solitonlike) caused by some concrete forms of the averaged 
conformally fiat space-time metric ( ~ ( x ,  be) ) are considered. 

1. INTRODUCTION 

In this paper we discuss the possibility of an interrelation between the 
properties of space-time structure and the dynamics of particles. This 
problem is not new to scientific literature. For example, Einstein (1924) 
thought to use the random fluctuations of the metric field g~,(x) as the 
origin of the real quantum forces which justify the stochastic interpretation 
of quantum mechanics. This idea was considered by Frederick (1976), Vigier 
(1982), and others (see the review due to Vigier, 1982). Moreover, an 
analogous idea on the question has been discussed by Efinger (1981), who 
wrote: "[If] freely moving particles are represented by solitary waves which, 
by definition, preserve their shape, then one could hypothesize that associ- 
ated with these waves is a Riemannian metric g~,(x) which is nearly 
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singular in a region corresponding to the width of the solitary wave-ampli- 
tude [an idea reminiscent of an old concept by Einstein, 1967]." According 
to this view, the particles in question are geometrical objects on a Rieman- 
nian space-time. 

It is well known that in Einstein's theory of gravitation space-time 
structure near matter is changed and differs from flat space-time (for 
illustration see Figure 1). The validity of this assumption in a macroscale 
was demonstrated by the experiment measuring the deviation of light near 
the Sun. However, the question of what effect would be expected in the 
microworld is still open to discussion within this assumption, and in 
particular the influence of space-time structure near particles on their 
dynamic behavior. 

We will base our study of this problem on the assumption that there 
exists a profound connection between the structure of space-time in the 
microworld and the propagation mechanism of particles. To realize this 
connection we assume that freely moving particles disturb space-time around 
themselves, and at the same time the space-time metric is generated and 
becomes a Riemannian one g~,,(x, bE) (x = x0,x) depending on a random 
four-vector b E = ( b 4 , h )  with a distribution w(b~/l 2) obeying the conditions 

w(b~-/lz)>~O, fd4bEw(bZJl2)=l, 

fa'bE  w(b /t2)=t2, 2) 

Parameter 1 characterizes the value (intensity) of fluctuations in metric and 
we call it the fundamental length. 

Our next assumption is that a form of g#,(be, x ) determines the 
space-time structure near particles and gives the general effect on the 
particle behavior. In other words, the character and type of the particle 
motion is essentially dependent on the space-time structure near moving 
particles. For example, we propose that the flat space-time structure gives 
rectilinear motion, and solitonlike, stochastic, and other types of particle 
motion may be caused by different forms of space-time structures around 
the particle. As a first step we choose a simple form 

Then the averaged space-time metric acting on the behavior of particles is 
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Fig. I. The illustration of changing space-time structure near the particle. 

obtained by the formula 

g ~ , ( t , x ) = ( g ~ ( b e ,  x ) )  

= f a % w (  b~/t 2 )~,~( bE, x)..~ = ~2( z, x ) , . ~  

where r/~,, is the Minkowski metric (for details, see Namsrai, 1984). 
In this conformally flat space-time the action for a free 

acquires the form 

S = - m c  ds, ds = [ ( ) ] t & t , . l , x  dx"dx~'j 1/2 

= q~(x, l )ds  o, ds o = ( d x " d x , )  t/2 

According to the action principle 

d S = - m c f a b 3 d s = - m c f b 3 d s 2 / 2 d s  = -mcfab3(g~dx'dx~)/2ds 
b 1 dx ~ dx~ Og.~3x ~ + g.~ ds = 0 

= - m c  2 ds ds Ox x ds ds 

(1) 

particle 

(2) 
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we have the following nonlinear equation: 

ds ~ Ox------ 7 + u, u x = 0 (3) 

Here u x = dxX/dso . Since u'u,  =1, 

u, d U , = u ,  Olnep uX 01nq' = 0 

&o ~x" Ox ~ 

as is to be expected. 
In a previous paper (Namsrai, 1984) we have attempted an explanation 

of the cosmic ray acceleration mechanism within this equation and have 
shown that the energy of a cosmic ray particle and its radius (the effective 
Schwarzschild), the age of Universe, and the value of the fundamental 
length l are connected with each other and are determined by a unified 
formula, Einstein's relation for the relativistic particle energy. From this we 
have obtained experimentally the value of the fundamental length l = 1.56 • 
10 -33 cm for the maximum proton energy observed in cosmic rays. The 
suggestion that the acceleration of cosmic rays is caused by the stochastic 
(or fluctuational) structure of space-time at small distances stimulated us to 
study the space-time structure near particles and its influence on particle 
behavior. Our aim is now to discuss equation (3) in the nonrelativistic limit 
by the appropriate choice of the form of the function qffx, 1). In conclusion 
of this section, we notice that the interrelation between space-time structure 
at small distances and the dynamic behavior of the particles appears at a 
deeper level and requires careful investigations. In this respect our approach 
is modest and belongs to the semi-empirical level. 

2. STOCHASTIC BEHAVIOR OF PARTICLES AND ITS 
CONNECTION WITH STOCHASTIC MECHANICAL 

DYNAMICS 

It is convenient to study the particle dynamic behavior arising from 
equation (3) and depending on the concrete form of the function ~(x, l) in 
the nonrelativistic limit. Before taking this limit for equation (3) we make 
some remarks. Generally speaking, according to the hypothesis of curved 
space-time structure around particles, the concept of their trajectory and 
velocity should be changed and generalized appropriately. In other words, it 
is quite possible that because of the metric fluctuations in the presence of 
particles, the description of the behavior of particles has a universal char- 



Space-Time Structure and Particle Behavior 1035 

acter and requires probabilistic methods. In particular, the particle velocity 
depends not only on the time variable t but also on the spatial variables x: 
v(t)---, v(x, t). We suggest that for a complete description of the particle 
motion within our approach, together with the particle velocity v(x, t) one 
should introduce two more quantities: p(x, t), the probability density of 
finding the particle at point x and at time t; and u(x, t) = Dvlnp(x ,  t), the 
stochastic velocity, where D is some constant physical meaning, which will 
be discussed below. Thus, our basic idea is the following: fluctuations in 
metric take place everywhere (increasing in the presence of the particles), 
and may play the role of origin of the real "quantum" forces and lead to the 
random behavior of the particles; their dynamics are described by nonlinear 
partial differential equation of the type (3) admitting random solutions, and 
by the equation of continuity for p(x, t): 

8__s + div(pv) = 0 (4) 
8t 

In this case the particle velocity is given by the formula 

v(t) = fp(x ,  t)v(x, t)d3x 

In order to obtain the nonrelativistic equation of motion in our 
approach we go over to the formal limit c---, c~ in equation (3). The time 
component of this equation in the case of c ~ o0 acquires the form 

v.vhi =0 (5) 

The passage to the limit c---, c~ in the spatial components of (3) gives the 
following relation: 

1 0 2 01nr 
-~-v +v 2 Ot - 0  (6) 

taking into account the relation (5). From this equation we see that if the 
function ~ does not depend on the time variable then the particle velocity is 
constant and the particle moves along a rectilinear trajectory. This situation 
also takes place in the limit, when the value of the fundamental length l is 
neglected, and thus, by our assumption, ~(x, l) =1 at l ---, 0. 

After simple integration of (6) we have 

02~, 2 = const (7a) 

Here the constant may be obtained from an initial condition, say, v2~21,=o 
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= v~. Thus, the particle velocity v(x, t) and the form of the function q,(x, l) 
are related by the formula 

v2=v0Z/r 2 (7b) 

Physically this relationship means that knowing the space-time structure 
near the particle we can calculate its velocity (generalized) and conversely, 
knowing the value of the particle velocity we can build the space-time 
structure near the moving particle. Thus, it seems, there exists a profound 
connection between these two concepts and they enter as a single entity 
inseparably into our scheme. Therefore, generally speaking, the function 
qffx, 1) should be dependent on the properties of the particle: on its mass, 
an effective size X (in the quantum mechanical case X = h/mc) and the 
initial velocity o o, and so on. In this paper, we consider three cases for the 
function qffx,/)  ~ qffx, t; l, X, Oo) (here the space-time dimension is two: 
X, 1): 

Cx(x,t;l,h,Vo)--*oo for t ---, oo 

q)l(x,t;l,X,Vo)--,O at Ixl---, oo (8) 

II. qh(x,t;l,?~,Vo)--,1, for t,lxl ---, oo (9) 

III. (P3(x,t;l,~,Vo)--~oO for t,lxl ---' ~ (10) 

We assume here the equality q~i(x, t; l, ~,, Oo) =1 at l ---, 0, is fulfilled for 
all three cases. Now we consider the first case and the simple form 

This gives 

qh(x, t; 1, 2~, o0) = (1 + bt2)/[1 + (b/oo)tX ] (11) 

v = (v o + btx) / ( l+ bt z) (12) 

where b = 4D 2(1/~3), and D is a universal constant dimension of [cmZ/sec], 
D - h / m .  The solution of the equation of continuity (4) with the velocity 
(12) and the initial condition 

p(x ,  t = 0) = a -  'Tr- ' /2exp(-  xZ/a 2 ) 

has the form 

p(x,t)=a-l~r-a/2(1 + b t2 ) - l /2exp[ - (x -  Vot)Z/a2(1 + bt2)] (13) 
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where a = (l/~3) -1/2. According to the above deduction in our case the 
stochastic velocity of the particle is given by 

u ( x , t ) = D X 7 1 n p ( x , t ) = - b X / 2 ( X - V o t ) / ( l + b t Z )  (14) 

The mean value and dispersion of the quantities v(x, t) and u(x, t) are 
determined by the formulas 

( v (x ,  t))  = f axo( , t )p (x ,  t) = v o 

(u(x ,  t)) = f d x u ( x ,  t)O(x, t) = 0 

Dis.v2(x, t) -- �89 + bt 2) (15) 

Moreover, by definition 

Dis. X2(t)  = �89 + bt 2) 

(02(X, t)) = 02 + la2b2t2/(1 + bt 2) (16) 

From the formulas (12)-(16) we conclude immediately that the simple 
space-time structure near moving particles determined by the expression 
(11) gives completely the stochastic mechanical results obtained by Namsrai 
(1981) if the constant D is taken equal to the diffusion coefficient 1, = h/2m.  
In this case the space-time metric near stochastic particles takes the form 

2 = , ] ( x ,  t; t, X, Oo)(c2dt - dx 2) (17) 

where qh(x, t; l, ?~, v0) is given by the formula (11). 
It should be noted that this metrical forr0 gives rise to a random 

behavior of particles (like Brownian motion), i.e., the particle is forced to 
move stochastically during its propagation in space-time. But, on the other 
hand, particles always take care of the space-time structure around them- 
selves in order to move further. This is essentially a dialectical unity of 
motion and space-time. 
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3. SOLITONLIKE BEHAVIOR OF PARTICLES 

Now we consider the cases (9) and (10), and choose the following 
simple forms: 

~2(x, t; l, ~.,/)0) = 1 + 12/[ h2 + ( x - / ) o t )  2] (18) 

q~3(x,,;l,~ /)o)= (1+11 shah~b cosh3(' x-v~ ) ( ~ 2  ~ ) ' cosh j b ~ ~2 + b s inh-  t l + b 

(19) 

where b is some positive constant. These expressions satisfy the conditions 
(9)~ (10), and ~ = 1  ( i = 2 , 3 )  at / = 0 ,  for any x and t. The following 
generalized velocities of the particle: 

x ~ + (x  - / )or)  2 
/)2 = Vo/qb2 = /)0~2 "1- 12 "~(X -- OO/) 2 

and 

v3 = v 0 / ~ 3  

correspond to the formulas (18) and (19), respectively. From these velocities 
v 2 and v 3 we have generalized "trajectories": 

[/)0 t -  XR(X, l ) ] -  
12 

(h2 q_ 12)1/2 

{ Vot 1 } 
X arctan (~2 + 12)1/2 1 + [x(x - Vot)/(h 2 + 12)] 

~2 (1 + / ) -  lcosh3b sinh-  x b X3(x,t ) =-~ 

x{sech2[~(X-Vot)+b]-sech2(lX+bl~-~ ]J 

It is easy to verify that 

X2(x, t) ~ x2(t ) = rot 
X3(x ,  t)  --, x~( t )  = ~)or 

(20) 

(21) 
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Fig. 2. Solitary-type wave corresponding to the formula (20). We see here two precise 
maximums-wave, the right part of which moves at a constant velocity without change of shape, 
while the left part  remains near the point x = 0. From this plot and the formula (20) one can 
suggest that in nature there may exist some type of particle motion which consists of two parts: 
rectilinear and solitonlike; however, because of the small value of the fundamental length / the 
latter type motion is not observed in practice. 

in the limit l ~ 0 .  Behaviors of the functions [ r o t - X 2 ( x , t ) ] / l  and 
X3(x, t ) / l  are shown in Figures 2 and 3, respectively. From these figures we 
observe that the "trajectories" obtained by the functions q~2 and q~3 corre- 
spond to a solitonlike motion of the particle. However, in the case of (20) 
because of the small value of the fundamental length l we do not, in fact, 
observe a deviation from the rectilinear particle trajectory for any value of 
~, even up to X - I. But the situation is different in the case of (21). When 

~ 1 0  -15 - - 1 0  -16 cm, the amplitude of the process (21) is of order unity, 
and therefore we can, in principle, experimentally observe solitonlike par- 
ticle behavior caused by the space-time structure near the moving particle. 

It should be noted that case (8) differs essentially from the other 
two cases (9) and (10). In the first case the generalized trajectory 
Xl(x ,  t)[vl(x,  t ) =  Xl(x ,  t)] corresponding to the velocity vl(x,  t) becomes 
infinite at x ~ _+ oo, i.e., the concept of trajectory in this case loses its 
significance and has no physical meaning, while in the other cases the 
functions [ r o t -  X2(x,t)]  and X3(x, t) are located along the rectilinear 
classical trajectory x( t ) = rot. 

Finally, for illustration, the space-time structure ds 2 =  r t) 
x ~,~ dx ~ dx ~, i.e., the function q~2(x, t) corresponding to the particle behav- 
ior determined by the formula (21), is shown in Figure 4. In our semiempiri- 
cal approach the question of a possible unique choice of the functions 
qffx, t; l, ~, v0) is not answered and seems to require another fundamental 
physical principle. At present, the formulation of this principle is not known 
and needs deeper study. However, we assume that this important problem 
may be solved alternatively, namely, by the character of the particle motion. 
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if; 

\ t  
Fig. 3. Behavior of the "trajectory" (21) at the value of ~, = 1. This plot is a hump-shaped wave 
exactly as Scott Russell observed (see Dodd et at., 1983), which moves along the classical 
trajectory .~ = rot at a constant velocity without change of shape. For larger values of h the 
wave is broader and higher, but becomes thinner and short the smaller ~. becomes. The left part  
of this figure, it appears, has no physical meaning. It is caused by the initial condition of the 
problem and corresponds to some minimum located near the point x = 0. This motionless 
minimum gives a " 'canal" over the time variable, a plot of which is not seen in the figure. 

Fig. 4. A plot of the space-time structure, i.e., ,~2(x, t) corresponding to the solitonlike motion 
sketched in Figure 3. From this diagram we see that the metric ds 2= q~2(x,t)ds~ in the 
conformally flat space-time is singular in the region corresponding to the classical trajectory 
x ~ rot. According to the diagram one can conclude that in order to hold a particle in a 
localized region during its propagation in space-time, or, for energy to be propagated in 
localized stable " 'packets" without being dispersed, it needs enormous efforts for space-time, 
i.e., space-time sets up an infinitely higher barrier wall around a particle. 
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This means that one can try to construct the space-time structure near the 
moving particle by means of the value of its velocity. For example, if we 
observe a rectilinear trajectory for the particle, we can conclude that the 
space-time structure near such a particle is flat. The role of that particle may 
be played by a photon, since, according to the relation (7a), if the constant 
in the right-hand side of (7 a) is equal to the velocity of light c then the 
current velocity v(x ,  t) should be equal to c, and therefore q~ = 1 everywhere 
for all t. We propose here that the light velocity in space-time is truly 
constant. If this assumption is valid at small distances (or at very-high 
energies) then light does not disturb space-time around itself, which always 
remains flat. In contradistinction to rectilinear motion, other types of 
particle motion correspond to a curved space-time structure. 

In conclusion, we notice that metric fluctuations which give rise to 
stochastic and other types of particle motion, if they exist, would be 
detected by ultrahigh energy particles if their wavelength ?~ were comparable 
to or shorter than the value of the fundamental length l - 10- 33 cm. In other 
words, the properties of a particle with mass m < < M = h / l c - l O  -5 g 
(~ = h / m c  ~ oo) would be essentially insensitive to the fluctuational struc- 
ture of space-time. 
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